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This paper proposes and validates a new formulation to investigate the dynamic

response of dam–reservoir systems with upstream transmitting boundary conditions

(TBCs). The mathematical derivations are provided for the new formulation as well as

for exact and various approximate TBCs. The developed analytical equations can be

error independently of FEM or BEM modeling of the reservoir. The method is first

validated in the case of semi-infinite reservoirs and an excellent agreement is obtained

against classical techniques. The paper presents a fundamental understanding of the

behavior of various TBCs and a systematic identification of their influence on the

system’s dynamic response, considering: (i) dam flexibility, (ii) water compressibility,

(iii) reservoir bottom wave absorption, (iv) reservoir truncation length, and (v)

excitation frequency. The new method is used to obtain exact error estimators to

evaluate the effects of various TBCs on the dam–reservoir first resonant frequency and

hydrodynamic forces acting on the dam upstream face. The proposed formulation can

be programmed easily and used efficiently for rigorous assessment of classical or newly

developed TBCs for vibrating dam–reservoir systems or similar fluid–structure

problems.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Accurate evaluation of reservoir loading on a dam upstream face is crucial for its seismic safety assessment. Significant
research has been devoted to study this type of loading since the pioneering work of Westergaard [1] who used a
heightwise added mass distribution to model hydrodynamic pressure on a dam upstream face. This concept has been
widely used for several decades to design earthquake resistant gravity dams. More advanced analytical and numerical
frequency-domain and time-domain approaches were proposed later to account for dam deformability, water
compressibility and reservoir bottom wave absorption in the seismic response of dam–reservoir systems [2–13]. Some
of these procedures were validated against forced-vibration testing of concrete gravity and arch dams [14–16]. Among the
numerical techniques used to study dam–reservoir systems, the finite element method (FEM) and boundary element
method (BEM) have gained wide popularity. Due to the large extent of the reservoir, these methods require its virtual
truncation at a finite distance from dam face and application of appropriate transmitting boundary conditions (TBCs) at the
upstream end of the reservoir. Here, we note that although BEM may intrinsically satisfy radiation conditions at infinity
contrary to FEM, to reduce computational burden, it might be useful to split an infinite reservoir into: (i) a finite near field
ll rights reserved.
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region to be discretized by BEM, and (ii) an infinite far-field region, to be modeled as an infinite continuum domain or by
infinite finite elements [11]. In this case, as for FEM, a TBC has to be applied at the boundary between the near field and the
far field to ensure adequate energy radiation at infinity. These special boundary conditions and the truncation distance
should be defined appropriately to prevent reflection of spurious waves back towards the dam. Otherwise, significant error
may be introduced in the prediction of the dynamic response of the dam–reservoir system.

Among the many TBCs proposed in the literature, the Sommerfeld radiation boundary condition has been widely used
[17–20]. Although the method can be easily incorporated in a FEM or BEM program, it performs adequately only when
placed at a large distance from dam face. Saini et al. [8] and Saini [21] studied the coupled response of dam–reservoir
systems and developed infinite elements to model energy dissipation at the far-upstream end of the reservoir. They
concluded that the effect of radiation damping is significant at high frequencies of excitation. Hall and Chopra [5]
developed a substructuring technique where the dam, reservoir and foundation are modeled using finite elements and
their responses coupled through interface forces to obtain the global dynamic behavior. They considered a one-
dimensional model to account for reflection of waves at reservoir bottom, and proposed a one-dimensional infinite
boundary condition to simulate absorption of compression waves outgoing from a seismically excited dam–reservoir
towards its upstream end. Humar and Roufaiel [22] proposed a modified Sommerfeld boundary condition, implemented it
into a finite element program and proved its efficiency to be superior to the classical Sommerfeld TBC for frequencies
between the first and the second natural frequencies of the reservoir. They did not consider reservoir bottom wave
absorption in their study. Neglecting water compressibility, Sharan [23] proposed a TBC based on the analytical solution for
hydrodynamic pressure in a reservoir impounded by a rigid dam. He concluded that this TBC gives satisfactory results even
for very short reservoir truncation lengths. Sharan [24] extended his TBC to include water compressibility, but still
considered a complete reflective reservoir bottom and a rigid dam. He showed that the new TBC is a generalization of the
Sommerfeld TBC and of that proposed by Humar and Roufaiel [22]. He also confirmed that the Sommerfeld TBC gives
satisfactory results only when placed very far away from dam face and for excitation frequencies lower than the reservoir
first natural frequency. Sharan [25] extended the use of his TBC to deformable dams by dividing the reservoir into a near-
field domain with an arbitrary shape, and a far-field domain with a uniform rectangular geometry. He modeled the whole
dam–reservoir system using finite elements and applied a TBC based on a rigid dam assumption to the upstream end of the
far-field domain. The TBC was improved later by including the effects of reservoir bottom wave absorption [26].
Satisfactory results were obtained for short truncation lengths and a wide range of excitation frequencies except near the
second and third natural frequencies of the reservoir [26]. Jablonski [27] developed a BEM program implementing the TBC
proposed by Hall and Chopra [5]. He studied the effect of the location of this TBC on hydrodynamic pressures at dam
upstream face, and concluded that the accuracy of the results is sensitive to the type and size of the boundary elements
used, a result also previously reported for finite element models [28,29].

All the TBCs described above were, however, developed considering a rigid dam assumption. Recently, Maity and
Bhattacharyya [30] proposed a TBC that intrinsically takes account of dam flexibility and is therefore height-dependent.
They considered a completely reflective reservoir bottom and implemented this TBC into a FEM program. They evidenced
the effects of dam flexibility, and the TBC was shown efficient in time-domain analyses of dam–reservoir systems. C- etin
and Mengi [31] developed a TBC based on spectral theory of waves propagating horizontally along a fluid reservoir with a
completely reflective reservoir bottom. They assessed the TBC through BEM analysis of two benchmark problems of rigid
dams subjected to harmonic and time dependent loadings. Bouaanani et al. [32] formulated a new TBC to account for
energy radiation in ice-covered reservoirs, including the effects of reservoir bottom wave absorption and water
compressibility. They implemented the proposed TBC into a BEM program and proved its effectiveness and accuracy
through a parametric study of a typical dam–reservoir system. Maity [33] and Küc- ükarslan [34] proposed TBCs to study
earthquake-induced horizontal vibrations of incompressible-unbounded infinite fluid domains with completely reflective
reservoir bottoms. They incorporated the TBCs into FEM programs and showed their performance to be superior to classical
TBCs when placed near dam upstream face. Gogoi and Maity [35] extended the TBC proposed by Maity and Bhattacharyya
[30] to include energy dissipation at reservoir bottom. They defined the new TBC based on a closed-form formulation of
hydrodynamic pressure proposed by Bouaanani et al. [36]. The proposed TBC was implemented in a FEM code for
frequency- and time-domain analyses of dam–reservoir systems and was found to perform efficiently on a wide frequency
range of interest in dam seismic analyses.

TBCs are generally approximate, absorbing only a portion of impinging waves, and thus introducing some error into the
solution. This error is usually to be minimized based on the experience and judgement of the analyst after some initial
guess of the truncation boundary location. Successive trials are then performed to ensure numerical convergence of the
FEM or BEM solutions as a function of truncation length and mesh refinement. It is important, however, to separate errors
that can be attributed strictly to the type of TBC applied and its location from the discretization, convergence, or other
numerical or modeling errors specific to the FEM or BEM packages used. Such a validation is generally conducted through
comparison with the exact solution of the mathematical model describing dam–reservoirs with upstream TBCs. However,
available analytical solutions can handle only heightwise constant TBCs and thus cannot be used to validate FEM or
BEM models with height-dependent TBCs which include dam flexibility effects. The main objective of this work is
to develop an original and rigorous analytical technique to reliably predict the accuracy of a given TBC in a vibrating
dam–reservoir system and estimate the TBC effects and associated error independently of FEM or BEM modeling of the
reservoir. This method would be also useful in testing, validating or developing either frequency-dependent TBCs
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or frequency-independent TBCs which are generally more suitable for time domain analyses of dam–reservoir systems.
Another objective of this work is to use the proposed method to present a fundamental understanding of the behavior of
various TBCs and provide a systematic identification of their influence on the dynamic response of a dam–reservoir system,
considering the effects of: (i) dam flexibility, (ii) water compressibility, (iii) reservoir bottom wave absorption, (iv)
reservoir truncation length, and (v) excitation frequency. To the authors’ knowledge, such a thorough analysis has never
been published.

This paper is organized as follows. In Section 2, we briefly review the mathematical background of a classical analytical
technique and we define some common TBCs. We then establish the mathematical formulation underlying the new
analytical method proposed to study dam–reservoir systems with upstream TBCs. In Section 3, we examine the sensitivity
of common TBCs to various key factors, and we illustrate the use of the proposed method to investigate the efficiency and
accuracy of these TBCs. The last section contains some concluding remarks.
2. Mathematical formulations

2.1. Review of the formulation for a semi-infinite reservoir

Fig. 1(a) illustrates a typical gravity dam of height Hs, impounding a rectangular semi-infinite reservoir of constant
height Hr . The effects of sediments that may be deposited at reservoir bottom are also considered. A Cartesian coordinate
system with axes x and y and origin at the heel of the structure is adopted as well as the following main assumptions: (i)
the dam and the water are assumed to have a linear elastic behavior; (ii) the water in the reservoir is compressible and
inviscid, with its motion irrotational and limited to small amplitudes; and (iii) gravity surface waves are neglected. Under
these assumptions, the hydrodynamic pressure pðx; y; tÞ in the reservoir obeys the wave equation

r2p¼
1

C2
r

q2p

qt2
(1)
Fig. 1. Dam–reservoir systems considered for the analytical formulation: (a) dam impounding a semi-infinite reservoir; (b) dam impounding a

truncated-length reservoir.
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wherer2 is the Laplace differential operator, t the time variable, rr the mass density of water and Cr the compression wave
velocity given by

Cr ¼

ffiffiffiffiffimr

rr

r
(2)

in which mr denotes the bulk modulus of water.
Considering horizontal harmonic ground accelerations €ugðtÞ ¼ ageiot , the hydrodynamic pressure in the reservoir can be

expressed in the frequency domain as pðx; y; tÞ ¼ pðx; y;oÞeiot , where pðx; y;oÞ is a complex-valued frequency response
function (FRF). Introducing this transformation into Eq. (1) yields the classical Helmholtz equation

r2pþ
o2

C2
r

p ¼ 0 (3)

The dam section can be modeled using finite elements and assuming that the system has a constant hysteretic damping,
the dynamic equilibrium of the dam–reservoir system can be expressed in the frequency domain as

½�o2Mþð1þ iZsÞK�UðoÞ ¼ �agM1þFhðoÞ (4)

where U is a column-vector containing the FRFs of dam nodal displacements relative to the ground, M and K are the dam
mass and stiffness matrices, respectively, Zs is the structural hysteretic damping factor, Fh is a column-vector containing
the FRFs of hydrodynamic pressure loads, and 1 is a column-vector with the same dimension as the vector of nodal relative
displacements, containing zeros except along horizontal degrees of freedom which correspond to the direction of
earthquake excitation. Using a modal superposition analysis, the FRFs of relative displacement and acceleration
components at coordinate ðx; yÞ can be expressed as

uðx; y;oÞ ¼
Xms

j ¼ 1

cðxÞj ðx; yÞZjðoÞ; €u ðx; y;oÞ ¼ �o2
Xms

j ¼ 1

cðxÞj ðx; yÞZjðoÞ (5)

vðx; y;oÞ ¼
Xms

j ¼ 1

cðyÞj ðx; yÞZjðoÞ; €v ðx; y;oÞ ¼ �o2
Xms

j ¼ 1

cðyÞj ðx; yÞZjðoÞ (6)

where u and v denote the horizontal and vertical relative displacements, respectively, €u and €v the horizontal and vertical
accelerations, respectively, cðxÞj and cðyÞj the x- and y-components of the j th dam mode shape, Zj the generalized coordinate,
and ms the number of structural mode shapes included in the analysis. The hydrodynamic pressure FRF p can be
decomposed as [6]

pðx; y;oÞ ¼ p0ðx; y;oÞ�o2
Xms

j ¼ 1

ZjðoÞpjðx; y;oÞ (7)

where p0 is the FRF for hydrodynamic pressure due to rigid body motion of the dam, and where pj is the FRF corresponding
to hydrodynamic pressure due to horizontal acceleration cðxÞj ðyÞ ¼cðxÞj ð0; yÞ of the dam upstream face along structural mode
j. The boundary conditions to be satisfied by FRFs p0 and pj are detailed in this section.
�
 At dam–reservoir interface: This boundary condition is based on compatibility between hydrodynamic pressures and
normal displacements at dam–reservoir interface, yielding [6]

qp0

qx
ð0; y;oÞ ¼ �rrag ;

qpj

qx
ð0; y;oÞ ¼�rrc

ðxÞ
j ðyÞ (8)

At reservoir free surface: Neglecting the effect of gravity waves at reservoir free surface [38,39], hydrodynamic pressures
�

at this location are assumed null

p0ðx;Hr ;oÞ ¼ pjðx;Hr ;oÞ ¼ 0 (9)

At reservoir bottom: This boundary condition was introduced by Hall and Chopra [5] to approximately account for
�

energy dissipation at reservoir bottom through one-dimensional partial absorption of incident compression waves
normal to the reservoir bottom boundary

qp0

qy
ðx;0;oÞ ¼ ioqp0ðx;0;oÞ;

qpj

qy
ðx;0;oÞ ¼ ioqpjðx;0;oÞ (10)

where q is a damping coefficient defined at the reservoir bottom as

q¼
rr

rf Cf
(11)

and where rf and Cf denote the mass density and the compression wave velocity within the reservoir foundation,
respectively. The portion of the wave amplitude reflected back to the reservoir is represented by the wave reflection
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coefficient a defined by

a¼ 1�qCr

1þqCr

(12)

where a may vary from 0 for full wave absorption to 1 for full wave reflection.

�
 At infinity upstream of the reservoir: To obtain analytical expressions for the FRFs p0 and pj, Hall and Chopra [5] and

Fenves and Chopra [6] considered an undisturbed pressure condition implying a null hydrodynamic pressure at infinity
of the continuum fluid domain upstream, i.e. when x-�1 according to the system of axes in Fig. 1(a):

lim
x-�1

p0ðx; y;oÞ ¼ lim
x-�1

pjðx; y;oÞ ¼ 0 (13)

In the rest of the paper, a superscript ð1Þ will be used to denote hydrodynamic pressures, forces and other physical
quantities determined using the aforementioned boundary conditions. These boundary conditions are coupled to Eq. (3) to
determine classical expressions of hydrodynamic pressure [6]. The resulting FRFs pð1Þ0 and pð1Þj are written here as the
summation of mr functions pð1Þ0n and pð1Þjn corresponding each to a reservoir mode n

pð1Þ0 ðx; y;oÞ ¼
Xmr

n ¼ 1

pð1Þ0n ðx; y;oÞ (14)

pð1Þj ðx; y;oÞ ¼
Xmr

n ¼ 1

pð1Þjn ðx; y;oÞ (15)

in which

pð1Þ0n ðx; y;oÞ ¼�2rragHr
l2

nðoÞ
bnðoÞ

I0nðoÞ
knðoÞ

eknðoÞxYnðy;oÞ (16)

pð1Þjn ðx; y;oÞ ¼�2rrHr
l2

nðoÞ
bnðoÞ

IjnðoÞ
knðoÞ

eknðoÞxYnðy;oÞ (17)

where ln and Yn are complex-valued frequency dependent eigenvalues and orthogonal eigenfunctions satisfying for each
reservoir mode n

e2ilnðoÞHr ¼�
lnðoÞ�oq

lnðoÞþoq
(18)

Ynðy;oÞ ¼
½lnðoÞ�oq�e�ilnðoÞyþ½lnðoÞþoq�eilnðoÞy

2lnðoÞ
(19)

and where the terms bn, kn, I0n, Ijn are given by

bnðoÞ ¼Hr½l
2
nðoÞ�o

2q2�þ ioq; knðoÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

nðoÞ�
o2

C2
r

s
(20)

I0nðoÞ ¼
1

Hr

Z Hr

0
Ynðy;oÞdy; IjnðoÞ ¼

1

Hr

Z Hr

0
cðxÞj ðyÞYnðy;oÞdy (21)

Iterative techniques such as Newton–Raphson method can be used to solve Eq. (18) at each excitation frequency o. We
note that for a completely reflective reservoir bottom, i.e. a¼ 1, knðoÞ is either: (i) a real positive number when exciting
frequency o is lower than the vibration frequency orn of the impounded reservoir, or (ii) a pure imaginary number
otherwise [5,6,22]. In the first case, the sums in Eqs. (14) and (15) decay exponentially with increasing distance upstream,
and in the second case, these sums contain a non-decaying part representing waves propagating in the upstream direction.
When reservoir bottom absorption is included, kn is a complex number with a positive real part, and the series in Eqs. (14)
and (15) decay with increasing distance upstream, although slowly for slightly absorptive reservoirs. The number of
reservoir modes mr to be included in the analysis should be selected based on the convergence of the sums in Eqs. (14) and
(15). Through extensive numerical analyses of idealized dam sections, Fenves and Chopra [6] proposed and validated a
minimum value mr 4omax=ð2o0Þþ5 to ensure convergence, where omax denotes the maximum excitation frequency
considered in the analysis, and o0 ¼ pCr=ð2HrÞ the natural frequency of the full semi-infinite reservoir.

If water compressibility is neglected, real-valued and frequency-independent eigenvectors ln and eigenvectors Yn are
given by

ln ¼
ð2n�1Þp

2Hr
; YnðyÞ ¼ cos

ð2n�1Þpy

2Hr

� �
(22)
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and Eqs. (20) and (21) simplify to

bn ¼
ð2n�1Þ2p2

4Hr
; kn ¼

ð2n�1Þp
2Hr

(23)

I0n ¼ 2
ð�1Þn�1

ð2n�1Þp ; Ijn ¼
1

Hr

Z Hr

0
cðxÞj ðyÞcos

ð2n�1Þpy

2Hr

� �
dy (24)

yielding the hydrodynamic pressures

pð1Þ0n ðx; yÞ ¼�8rragHr

ð�1Þn�1cos
ð2n�1Þpy

2Hr

� �
ð2n�1Þ2p2

eknx (25)

pð1Þjn ðx; yÞ ¼�4rr

cos
ð2n�1Þpy

2Hr

� �
ð2n�1Þp eknx

Z Hr

0
cðxÞj ðyÞcos

ð2n�1Þpy

2Hr

� �
dy (26)

Depending on whether water compressibility is included or not, Eqs. (16) and (17) or Eqs. (25) and (26) are used to obtain
hydrodynamic pressures pð1Þ0 and pð1Þj . The FRF for total hydrodynamic pressure is then given by [Eq. (7)]

pð1Þðx; y;oÞ ¼ pð1Þ0 ðx; y;oÞ�o
2
Xms

j ¼ 1

Z
ð1Þ

j ðoÞp
ð1Þ

j ðx; y;oÞ (27)

where the vector Z
ð1Þ

of generalized coordinates Z
ð1Þ

j , j¼ 1 . . .ms, is obtained by solving the system of equations

S
ð1Þ

Z
ð1Þ
¼Q

ð1Þ
(28)

in which elements of matrices S
ð1Þ

and Q
ð1Þ

are obtained for n¼ 1 . . .ms and j¼ 1 . . .ms as

S
ð1Þ

nj ðoÞ ¼ ½�o
2þð1þ iZsÞo

2
n�dnjþo2

Z Hr

0
pð1Þj ð0; y;oÞc

ðxÞ
n ðyÞdy (29)

Q
ð1Þ

n ðoÞ ¼ �agw
T
nM1þ

Z Hr

0
pð1Þ0 ð0; y;oÞc

ðxÞ
n ðyÞdy (30)

where d denotes the Kronecker symbol and on is the vibration frequency corresponding to structural mode shape cn. A
convergence study is conducted to determine the sufficient numbers ms and mr of structural and reservoir mode shapes to
be included into each specific analysis. We can also define the FRFs for hydrodynamic forces applied on dam upstream face,
i.e. at x¼ 0 according to the system of axes in Fig. 1

F
ð1Þ

0 ðoÞ ¼
Z Hr

0
pð1Þ0 ð0; y;oÞdy; F

ð1Þ
ðoÞ ¼

Z Hr

0
pð1Þð0; y;oÞdy (31)

The formulation described in this section was originally developed by Fenves and Chopra [6] to investigate earthquake
excited gravity dams impounding semi-infinite reservoirs. The method is based on a substructuring technique, where the
dam is modeled using finite elements and where reservoir effects are accounted for analytically through hydrodynamic
loads applied at dam upstream face and determined using mode shapes of the dam with an empty reservoir. Bouaanani
and Lu [40] showed that this procedure to include dam–reservoir interaction yields excellent results when compared to
techniques where the reservoir is modeled numerically using potential-based fluid finite elements. This analytical method
will be referred to as the classical formulation in the rest of the paper and will serve as our reference solution.

2.2. New formulation considering transmitting boundary conditions

As mentioned previously, appropriate TBCs are required for efficient finite element or boundary element modeling of
dam–reservoir systems. In this case, exact radiation boundary conditions at the far-dam upstream face [Eq. (13)] are
replaced by TBCs to be applied at a finite distance Lr from dam upstream face as shown in Fig. 1(b). TBCs are used to
prevent or reduce reflection of waves impinging a fictitious truncation boundary of an infinite reservoir. They can be
generally defined by the relationship between the hydrodynamic pressure and its normal gradient both determined at the
truncation boundary. According to the system of axes in Fig. 1(b), we consider TBCs that can be expressed as

qpð1Þ0

qx
ð�Lr ; y;oÞ ¼ yðLr Þ

0 ðy;oÞp
ð1Þ

0 ð�Lr ; y;oÞ (32)

qpð1Þj

qx
ð�Lr ; y;oÞ ¼ yðLr Þ

j ðy;oÞp
ð1Þ

j ð�Lr ; y;oÞ (33)
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where the functions yðLr Þ

0 and yðLr Þ

j are generally height- and frequency-dependent. We note that the TBC in Eq. (32) accounts
for rigid body motion of the dam, while that in Eq. (33) accounts for dam elastic deformation along structural mode shape
cðxÞj . In the rest of the paper, a superscript ðLr Þ will be used to denote hydrodynamic pressures obtained using TBCs placed at
a distance Lr from dam upstream face. Differentiating Eq. (27) with respect to x gives

qpð1Þ

qx
ðx; y;oÞ ¼

qpð1Þ0

qx
ðx; y;oÞ�o2

Xms

j ¼ 1

ZjðoÞ
qpð1Þj

qx
ðx; y;oÞ (34)

Taking x¼�Lr and substituting Eqs. (32) and (33) into Eq. (34) yields

qpð1Þ

qx
ð�Lr ; y;oÞ ¼ yðLr Þ

0 ðy;oÞp
ð1Þ

0 ð�Lr ; y;oÞ�o2
Xms

j ¼ 1

ZjðoÞy
ðLr Þ

j ðy;oÞp
ð1Þ

j ð�Lr ; y;oÞ (35)

Using Eqs. (27) and (35), we can define a TBC expressed in terms of total hydrodynamic pressure pð1Þ as

qpð1Þ

qx
ð�Lr ; y;oÞ ¼ yðLr Þðy;oÞpð1Þð�Lr ; y;oÞ (36)

in which the height- and frequency-dependent function yðLr Þ is given by

yðLr Þðy;oÞ ¼
yðLr Þ

0 ðy;oÞp
ð1Þ

0 ð�Lr ; y;oÞ�o2
Pms

j ¼ 1 ZjðoÞy
ðLr Þ

j ðy;oÞp
ð1Þ

j ð�Lr ; y;oÞ

pð1Þ0 ð�Lr ; y;oÞ�o2
Pms

j ¼ 1 ZjðoÞpð1Þj ð�Lr ; y;oÞ
(37)

The TBCs defined by Eqs. (32)–(37) will be referred to as analytical TBCs in the rest of the paper. Using Eqs. (14) and (15),
the functions yðLr Þ

‘ ; ‘¼ 0; j, can be expressed as

yðLr Þ

‘ ðy;oÞ ¼
Pmr

n ¼ 1 knðoÞpð1Þ‘n ð�Lr ; y;oÞPmr

n ¼ 1 pð1Þ‘n ð�Lr ; y;oÞ
(38)

We will also examine the effectiveness of truncated TBCs, where the sum in Eq. (38) is truncated at a given number ~mr less
than the number of reservoir modes mr ensuring convergence, yielding the function ~y‘

ðLr Þ

~y‘
ðLr Þ
ðy;oÞ ¼

P ~mr

n ¼ 1 knðoÞpð1Þ‘n ð�Lr ; y;oÞP ~mr

n ¼ 1 pð1Þ‘n ð�Lr ; y;oÞ
(39)

When water compressibility is neglected, Eq. (38) transforms to

yðLr Þ

‘ ðyÞ ¼Hr

Pmr

n ¼ 1 lnI‘ncosðlnyÞe�lnLrPmr

n ¼ 1

I‘n
ln

cosðlnyÞe�lnLr

(40)

where ln and I‘n are determined according to Eqs. (22) and (24), respectively. We note that Eq. (40) also corresponds to
very low frequencies, i.e. o-0, when water compressibility is included. In the rest of the paper, analytical TBCs will be
distinguished as compressibility- or incompressibility-based depending on whether compressible or incompressible water
assumptions are adopted.

When a TBC is applied at a finite length Lr , Eqs. (14)–(17) of the classical formulation are no longer valid to determine
hydrodynamic pressure within the reservoir. To get a rigorous assessment of the accuracy and effectiveness of a given TBC,
a new formulation is developed in this work. To alleviate the text, the detailed mathematical derivations of the formulation
are presented in Appendix A. When TBCs in (32) and (33) are imposed at a distance Lr from dam upstream face, we show in
Appendix A that hydrodynamic pressures pðLrÞ

0 and pðLr Þ

j can be expressed as

pðLr Þ

0 ðx; y;oÞ ¼
Xmr

n ¼ 1

pðLr Þ

0n ðx; y;oÞ (41)

pðLr Þ

j ðx; y;oÞ ¼
Xmr

n ¼ 1

pðLr Þ

jn ðx; y;oÞ (42)

where FRFs pðLr Þ

0n and pðLr Þ

jn are given by

pðLr Þ

0n ðx; y;oÞ ¼ ½e�knðoÞxþeknðoÞx�Gð0Þn ðoÞ�2rragHr
l2

nðoÞ
bnðoÞ

I0nðoÞ
knðoÞ

eknðoÞx

( )
Ynðy;oÞ ¼ ½e�knðoÞxþeknðoÞx�Gð0Þn ðoÞYnðy;oÞþpð1Þ0n ðx; y;oÞ

(43)

pðLr Þ

jn ðx; y;oÞ ¼ ½e�knðoÞxþeknðoÞx�GðjÞn ðoÞ�2rrHr
l2

nðoÞ
bnðoÞ

IjnðoÞ
knðoÞ

eknðoÞx

( )
Ynðy;oÞ ¼ ½e�knðoÞxþeknðoÞx�GðjÞn ðoÞYnðy;oÞþpð1Þjn ðx; y;oÞ

(44)
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in which Gð0Þn ðoÞ and GðjÞn ðoÞ are elements of vectors Cð0Þ and CðjÞ, obtained by solving the systems of linear equations

Að0ÞðoÞCð0ÞðoÞ ¼ Bð0ÞðoÞ; AðjÞðoÞCðjÞðoÞ ¼ BðjÞðoÞ (45)

where the elements of matrix Að‘Þ and vector Bð‘Þ are given for ‘¼ 0; j by Eqs. (A.24) and (A.25) of Appendix A. Eqs. (A.24)
and (A.25) will be used later to assess the efficiency of various TBCs and evaluate the associated errors. One important

aspect of this formulation is that it takes account of the variations of the functions yðLr Þ

0 and yðLr Þ

j over reservoir height. This

dependence is investigated next. Using Eq. (38) the derivatives of the functions yðLr Þ

‘ ; ‘¼ 0; j, with respect to coordinate y

can obtained as

qyðLr Þ

‘

qy
ðy;oÞ ¼

Pmr

s ¼ 1

Pmr

n ¼ 1½ksðoÞ�knðoÞ�pð1Þ‘s ð�Lr ; y;oÞpð1Þ‘n ð�Lr ; y;oÞ
Y nðy;oÞ
Ynðy;oÞPmr

s ¼ 1

Pmr

n ¼ 1 pð1Þ‘s ð�Lr ; y;oÞpð1Þ‘n ð�Lr ; y;oÞ
(46)

where

Y nðy;oÞ ¼
qYn

qy
ðy;oÞ ¼ 1

2
f½lnðoÞ�oq�e�ilnðoÞy�½lnðoÞþoq�eilnðoÞyg (47)

Eq. (46) shows that the derivatives of the functions yðLr Þ

0 and yðLr Þ

j with respect to coordinate y are generally not null.

Consequently, these functions as well as the function yðLrÞ [Eq. (37)] are generally not constant over reservoir height. This
behavior will be investigated numerically later as well as the implications of heightwise variations of TBCs on the
frequency response curves of hydrodynamic pressures and forces applied at dam upstream face.
Fig. 2. Dam–reservoir systems studied and boundary conditions used: (a) dam impounding a semi-infinite reservoir; (b) dam impounding a truncated-

length reservoir.
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Fig. 3. Variation of the parameter Hr jy
ðLr Þ

0 j for a rigid dam as a function of frequency ratio o=o0, height y, wave reflection coefficient a and truncation

length Lr . yA ¼ 0:1Hr; yB ¼ 0:5Hr; yC ¼ 0:9Hr; Sommerfeld BC; Sharan BC. Continuous lines: compressible water; dotted lines:

incompressible water.
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As proven in Appendix A, if functions yðLr Þ

‘ were assumed constant over reservoir height, i.e. independent of the y

coordinate, Eqs. (43) and (44) simplify to

pðLr Þ

0n ðx; y;oÞ ¼�2rragHr
l2

nðoÞ
bnðoÞ

I0nðoÞ
knðoÞ

XðLr Þ

0n ðx;oÞYnðy;oÞ (48)

pðLr Þ

jn ðx; y;oÞ ¼ �2rrHr
l2

nðoÞ
bnðoÞ

IjnðoÞ
knðoÞ

XðLr Þ

jn ðx;oÞYnðy;oÞ (49)

where XðLr Þ

‘n and zðLr Þ

‘n are given for ‘¼ 0; j by Eqs. (A.32) and (A.33) of Appendix A.
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Fig. 4. Variation of the parameter Hr jy
ðLr Þj for a flexible dam Es ¼ 35 GPa as a function of frequency ratio o=o0, height y, wave reflection coefficient a and

truncation length Lr . yA ¼ 0:1Hr; yB ¼ 0:5Hr; yC ¼ 0:9Hr; Sommerfeld BC; Sharan BC. Continuous lines: compressible water;

dotted lines: incompressible water.
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For illustration purposes, Eqs. (48), (49), and then Eqs. (41) and (42) will be used later to investigate the following
height-independent TBCs:
�
 Sommerfeld radiation boundary condition [17,18], corresponding to

yðLr Þ

0 ðoÞ ¼ yðLr Þ

j ðoÞ ¼
io
Cr

(50)

Sharan boundary condition [25,26], corresponding to
�
yðLr Þ

0 ðoÞ ¼ yðLr Þ

j ðoÞ ¼ k1ðoÞ (51)
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We note that the Sharan boundary condition is a special case of Eq. (39) with ~mr ¼ 1.
Once hydrodynamic pressures are determined for each reservoir mode n, Eqs. (41) and (42) are used to sum up the
contributions of the ~mr reservoir modes included in the analysis. The FRF for total hydrodynamic pressure is given by

pðLr Þðx; y;oÞ ¼ pðLr Þ

0 ðx; y;oÞ�o
2
Xms

j ¼ 1

Z
ðLr Þ

j ðoÞp
ðLr Þ

j ðx; y;oÞ (52)
. 5. Variation of the parameter Hr jy
ðLr Þj for a flexible dam Es ¼ 25 GPa as a function of frequency ratio o=o0, height y, wave reflection coefficient a and

ncation length Lr . yA ¼ 0:1Hr; yB ¼ 0:5Hr; yC ¼ 0:9Hr; Sommerfeld BC; Sharan BC. Continuous lines: compressible water;

ted lines: incompressible water.
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Fig. 6. Variation of the parameter Hr jy
ðLr Þj for o¼ 0:8o0 as a function of height y, wave reflection coefficient a and truncation length Lr . Lr ¼ 0:5Hr;

Lr ¼Hr; Lr ¼ 2Hr . Sommerfeld BC; Sharan BC. Continuous lines: compressible water; dotted lines: incompressible water.
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where the vector Z
ðLr Þ

of generalized coordinates Z
ðLr Þ

j , j¼ 1 . . .ms, is obtained by solving the system of equations

S
ðLr Þ

Z
ðLr Þ
¼Q

ðLr Þ
(53)

in which elements of matrices S
ðLr Þ

and Q
ðLr Þ

are now defined for n¼ 1 . . .ms and j¼ 1 . . .ms by

S
ðLr Þ

nj ðoÞ ¼ ½�o
2þð1þ iZsÞo

2
n�dnjþo2

Z Hr

0
pðLr Þ

j ð0; y;oÞc
ðxÞ
n ðyÞdy (54)

Q
ðLr Þ

n ðoÞ ¼ �agw
T
nM1þ

Z Hr

0
pðLr Þ

0 ð0; y;oÞc
ðxÞ
n ðyÞdy (55)
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Fig. 7. Variation of the parameter Hr jy
ðLr Þj for o¼ 1:2o0 as a function of height y, wave reflection coefficient a and truncation length Lr . Lr ¼ 0:5Hr;

Lr ¼Hr; Lr ¼ 2Hr . Sommerfeld BC; Sharan BC. Continuous lines: compressible water; dotted lines: incompressible water.
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Hydrodynamic forces at dam upstream face corresponding to hydrodynamic pressures pðLr Þ

0 and pðLr Þ can then be obtained as

F
ðLr Þ

0 ðoÞ ¼
Z Hr

0
pðLr Þ

0 ð0; y;oÞdy; F
ðLr Þ
ðoÞ ¼

Z Hr

0
pðLr Þð0; y;oÞdy (56)

3. Numerical results

3.1. Dam–reservoir system studied

For purpose of illustration, the new formulation presented previously is applied to analyse the dam–reservoir
system shown in Fig. 2, subjected to a unit horizontal harmonic ground acceleration €ugðtÞ ¼ eiot . A simplified triangular
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dam cross-section with dimensions inspired from the tallest non-overflow monolith of Pine Flat dam is considered. This
standard dam section was shown appropriate for a preliminary design and safety evaluation of concrete gravity dams and
was introduced to develop and illustrate simplified earthquake analysis procedures proposed by Chopra et al. [2,6,41]. The
dam cross-section has a height Hs ¼ 121:92 m ð400 ftÞ, a downstream slope of 0.8 and a vertical upstream face. A full
reservoir is assumed, i.e. Hr ¼Hs, and different reservoir truncation lengths Lr are considered as will be discussed later.
Fig. 2 illustrates the boundary conditions used. A dam Poisson’s ratio ns ¼ 0:2 and mass density rs ¼ 2400 kg=m3 are
adopted. To assess the influence of dam stiffness, two modulus of elasticity Es ¼ 25 and 35 GPa are considered. A constant
structural hysteretic damping factor Zs ¼ 0:1 is adopted. The water is assumed compressible, with a velocity of pressure
waves Cr ¼ 1440 m=s and a mass density rr ¼ 1000 kg=m3. To obtain the mode shapes cj, j¼ 1 . . .ms, the dam section is
modeled using quadrilateral 9-node and triangular 6-node plane stress finite elements as illustrated in Fig. 2.
Fig. 8. Variation of the parameter Hr jy
ðLr Þj for o¼ 2o0 as a function of height y, wave reflection coefficient a and truncation length Lr . Lr ¼ 0:5Hr;

Lr ¼Hr; Lr ¼ 2Hr . Sommerfeld BC; Sharan BC. Continuous lines: compressible water; dotted lines: incompressible water.
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Fig. 9. Variation of the parameter Hr jy
ðLr Þj for o¼ 4o0 as a function of height y, wave reflection coefficient a and truncation length Lr . Lr ¼ 0:5Hr;

Lr ¼Hr; Lr ¼ 2Hr . Sommerfeld BC; Sharan BC. Continuous lines: compressible water; dotted lines: incompressible water.
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3.2. Investigation of the response mechanisms of various TBCs

Before investigating the effects of various TBCs on reservoir hydrodynamic response, we first examine the dependency
of the absolute values of functions yðLr Þ

0 and yðLr Þ to frequency and reservoir depth. Fig. 3 shows the values of the
dimensionless parameter Hr jy

ðLr Þ

0 j determined at three reservoir depths corresponding to points A, B and C belonging to
dam–reservoir interface. Points A, B and C are located at heights yA ¼ 0:1Hr , yB ¼ 0:5Hr and yC ¼ 0:9Hr as shown in Fig. 2.
Both compressible and incompressible water assumptions as well as Sommerfeld and Sharan boundary conditions are
included. Results are determined for frequency ratios o=o0 varying from 0 to 6. Three truncation lengths Lr ¼ 0:5Hr , Lr ¼Hr

and Lr ¼ 2Hr and five reflection coefficients a¼ 1:0, 0:8, 0:6, 0:4, and 0:2 are considered. First, it is clearly seen that the
parameter Hr jy

ðLr Þ

0 j is not constant over reservoir height as usually assumed in previous research. In fact, Fig. 3 shows that
this assumption holds only over a lower frequency range up to a characteristic frequency oðLr Þ depending on truncation
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length Lr . We note that oðLr Þ becomes larger as truncation length increases. We also observe that the variations of Hrjy
ðLr Þ

0 j

become generally smoother with increasing reservoir bottom wave absorption and truncation length, suggesting a smaller
error when a TBC assumed constant over reservoir height is used in these ranges.

The results corresponding to an incompressible water assumption are obtained using Eq. (40). As expected, Fig. 3 shows

that the dimensionless parameter Hrjy
ðLr Þ

0 j is not sensitive to frequency variations and reservoir bottom wave absorption.

The curves are almost constant over reservoir height, namely as truncation length increases. According to Eq. (50), the
Sommerfeld radiation boundary condition varies linearly with frequency ratio. For lower frequencies, i.e. in this case
oro0, the differences between the curves representing the Sommerfeld and analytical TBC are very different, getting
closer as frequency ratio increases. Fig. 3 confirms that the effectiveness of the Sommerfeld boundary condition is least for
very low frequencies, and that it increases with higher frequencies, larger truncation length and more energy dissipation at
reservoir bottom. The curves representing Sharan boundary condition coincide with those of the exact boundary condition
Fig. 10. FRFs for normalized hydrodynamic forces determined using: (i) the new formulation for a truncated reservoir (Lr ¼ 0:1Hr), and (ii) the classical

solution considering a semi-infinite reservoir. —&— New analytical solution; — classical solution.
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up to frequency oðLr Þ. This behavior explains the efficiency of Sharan boundary condition in the lower frequency range as
will be discussed later. We also note that the curves corresponding to Sommerfeld and Sharan boundary conditions are
different at lower frequencies, while getting closer with approximately parallel curves in the higher frequency range.

The effects of dam flexibility are included next. Figs. 4 and 5 illustrate the variations of dimensionless parameter Hrjy
ðLr Þj

considering two dam concrete modulus of elasticity Es ¼ 35 and 25 GPa, respectively. By comparing Figs. 3–5, it can be

concluded that the analytical TBC is very sensitive to dam stiffness. The curves show that the amplitudes of Hrjy
ðLr Þj become

generally sharper as dam flexibility increases. Closer examination of the curves obtained for Lr ¼ 0:5Hr shows that dam

flexibility causes larger variations of the parameter Hrjy
ðLr Þj over reservoir height at the lower frequency range. This effect

vanishes as truncation length increases. We also observe that reservoir bottom wave absorption and dam flexibility have

very little effect on the maximum frequency oðLr Þ below which Hrjy
ðLrÞ

0 j and Hrjy
ðLr Þ

0 j can be considered constant over
Fig. 11. Heightwise distributions of normalized hydrodynamic pressures on dam upstream face determined using: (i) the new formulation for a

truncated reservoir (Lr ¼ 0:1Hr), and (ii) the classical solution considering a semi-infinite reservoir. —&— New analytical solution; — classical solution:

o¼ 0:8o0; o¼o0; o¼ 1:2o0; o¼ 2o0; o¼ 4o0.



ARTICLE IN PRESS

N. Bouaanani, B. Miquel / Journal of Sound and Vibration 329 (2010) 1924–1953 1941
reservoir height. At high frequencies, some curves exhibit sharp peaks corresponding to values of coordinate y and
frequency o that make the absolute value of the denominator in Eq. (38) very small for a given truncation distance Lr . As

observed for Hr jy
ðLr Þ

0 j, increasing reservoir bottom wave absorption and truncation length cause the variations of Hrjy
ðLr Þj to

become generally smoother. Figs. 3–5 show that the difference between the curves obtained under compressible and
incompressible water assumptions is significant except for highly absorptive reservoirs at a very low frequency range. It is
seen that incompressibility-based boundary conditions determined at different heights get closer as truncation length
increases. We also conclude that Sharan boundary condition is in excellent agreement with the compressibility-based

analytical TBC between 0 and oðLr Þ, and for a wider frequency range as reservoir bottom wave absorption increases.
Fig. 12. FRFs for normalized hydrodynamic forces determined using: (i) the new analytical formulation considering an incompressibility-based analytical

boundary condition, and (ii) the classical solution considering a semi-infinite reservoir. Lr ¼ 0:1Hr; Lr ¼ 0:5Hr; Lr ¼Hr; Lr ¼ 2Hr;

classical solution.
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To further investigate the variations of Hrjy
ðLr Þ

0 j and Hr jy
ðLr Þj over reservoir height, the heightwise profiles of these

functions are determined at three reservoir truncation lengths Lr ¼ 0:5Hr , Lr ¼Hr and Lr ¼ 2Hr and for frequencies ranging
from 0 to 6o0. For brevity, only results obtained at frequency ratios o=o0 ¼ 0:8, 1:2, 2:0 and 4:0 are illustrated in Figs. 6–9,
respectively. Profiles corresponding to both compressible and incompressible water assumptions as well as the constant
profiles representing Sommerfeld and Sharan boundary conditions are shown. We first observe that the profiles are
sensitive to dam stiffness, reservoir bottom wave absorption and frequency ratio and that they tend to become constant
over reservoir height as truncation length increases. At the lower frequency ratios o=o0 ¼ 0:8 and 1:2, we observe that the
compressibility-based profiles converge towards incompressibility-based ones as reservoir bottom wave absorption
increases. This implies that the error associated with the use of an incompressibility-based TBC condition increases for
highly reflective reservoirs. Figs. 6 and 7 also show that the three incompressibility-based profiles have each an inflexion
Fig. 13. FRFs for normalized hydrodynamic forces determined using: (i) the new analytical formulation considering Sommerfeld boundary condition, and

(ii) the classical solution considering a semi-infinite reservoir. Lr ¼ 0:1Hr; Lr ¼ 0:5Hr; Lr ¼Hr; Lr ¼ 2Hr; classical solution.
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point that is almost common. The same applies to the compressibility-based profiles. We note that the inflexion point is
approximately located at the same reservoir height for all the profiles. Incompressibility- and compressibility-based
Sharan boundary conditions also approximately pass through this inflexion point. A closer look at curves shows that the

maximum variation of Hr jy
ðLr Þ

0 j and Hrjy
ðLr Þj over height increases with reservoir bottom wave absorption and dam

flexibility. This behavior can be used to evaluate the error resulting from the use an incompressibility- or compressibility-
based Sharan boundary condition. Figs. 8 and 9 show that, at higher frequency ratios o=o0 ¼ 2:0 and 4:0, convergence
between compressibility- and incompressibility-based profiles with increasing reservoir bottom wave absorption and
truncation length is not as obvious as for lower frequency ratios. Some profiles have now more that one inflexion point, i.e.
the case a¼ 1, Es ¼ 35 GPa and Lr ¼ 2Hr , and some show sharp peaks corresponding to a very small absolute value of the
denominator in Eq. (38), i.e. the case a¼ 0:8, Es ¼ 25 GPa and Lr ¼Hr .
Fig. 14. FRFs for normalized hydrodynamic forces determined for low frequencies using: (i) the new analytical formulation considering Sharan boundary

condition, and (ii) the classical solution considering a semi-infinite reservoir. Lr ¼ 0:1Hr; Lr ¼ 0:5Hr; Lr ¼Hr; classical solution.
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Fig. 15. FRFs for normalized hydrodynamic forces determined for high frequencies using: (i) the new analytical formulation considering Sharan boundary

condition, and (ii) the classical solution considering a semi-infinite reservoir. Lr ¼ 0:1Hr; Lr ¼ 0:5Hr; Lr ¼Hr; classical solution.

N. Bouaanani, B. Miquel / Journal of Sound and Vibration 329 (2010) 1924–19531944
3.3. Error analyses

The formulations presented previously were fully programmed using MATLABs [37]. To first validate the new
formulation, it is used to determine hydrodynamic forces and pressures acting on the upstream face of the dam when
applying the analytical TBC at a reservoir truncation length as small as Lr ¼ 0:1Hr . Rigid and flexible dams with Es ¼ 35 and
25 GPa are considered. In each case, five reflection coefficients a¼ 1:0, 0:8, 0:6, 0:4, and 0:2 are investigated. Fig. 10
compares the hydrodynamic force FRFs obtained to those determined using the classical solution presented in Section 2.1,
while Fig. 11 illustrates the heightwise distributions of hydrodynamic pressure determined at different frequencies using
both methods. Hydrodynamic forces and pressures are normalized by hydrostatic force Fstat ¼ rrgH2

r =2 and hydrostatic
pressure pstat ¼ rrgHr , respectively. As can be seen, the new formulation yields a prefect agreement, irrespective of the level
of reservoir bottom wave absorption and dam stiffness.
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The validated new formulation is applied next to assess the effectiveness of various TBCs and determine the error
associated with their use. The effect of an incompressibility-based TBC at three truncation lengths Lr ¼ 0:5Hr , Lr ¼Hr and
Lr ¼ 2Hr of a compressible reservoir is investigated first. Rigid and flexible dams as well as different reservoir bottom wave
absorption levels are considered. Fig. 12 shows the obtained frequency response curves of hydrodynamic forces as well as
the classical solutions. The large discrepancies in the results show that incompressibility-based TBCs may induce
significant errors, although better agreement is found in the lower frequency range for reservoirs with a highly absorptive
bottom. The Sommerfeld radiation boundary condition presented in Eq. (50) is studied next. Using Eqs. (48), (49), and then
Eqs. (41) and (42), hydrodynamic pressure FRFs of hydrodynamic forces are determined considering three reservoir
truncation lengths Lr ¼ 0:5Hr , Lr ¼Hr and Lr ¼ 2Hr . Fig. 13 shows the results obtained as well as the classical solutions for a
semi-infinite reservoir. It is seen that the frequency response curves are very sensitive to reservoir truncation length. In the
low frequency range, the Sommerfeld radiation boundary condition is indeed effective only for relatively high reservoir
Fig. 16. Hydrodynamic force error estimators for a truncation length Lr ¼ 0:1Hr . Sommerfeld BC; Sharan BC; analytical BC with ~mr ¼ 2;

analytical BC with ~mr ¼ 3; analytical BC with ~mr ¼ 10.



ARTICLE IN PRESS

N. Bouaanani, B. Miquel / Journal of Sound and Vibration 329 (2010) 1924–19531946
truncation lengths, of the order of Lr ¼ 2Hr in the present case. However, even when using such an important truncation
length, some discrepancies are persistent at the higher frequency range, namely for reservoirs with a highly absorptive
bottom. Frequency response curves of hydrodynamic forces obtained using Sharan boundary condition [Eq. (51)] at three
reservoir truncation lengths Lr ¼ 0:1Hr , Lr ¼ 0:5Hr and Lr ¼Hr are then examined. To allow clear reading of the curves,
Fig. 14 illustrates the results for alow frequency range from 0 to 3o0, and Fig. 15 for a high frequency range from 3o0 to
6o0. We observe that Sharan boundary condition yields excellent results in the low frequency range for truncation lengths
as small as Lr ¼ 0:1Hr for the rigid dam case. When dam flexibility is included, this truncation length yields some
discrepancies with the classical solution, and a larger truncation length Lr ¼ 0:5Hr is required to reach an excellent
agreement. In the higher frequency range, Fig. 15 reveals that discrepancies are induced even for truncation lengths as high
as Lr ¼Hr .
Fig. 17. Hydrodynamic force error estimators for a truncation length Lr ¼ 0:5Hr . Sommerfeld BC; Sharan BC; analytical BC with ~mr ¼ 2;

analytical BC with ~mr ¼ 3.
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Fig. 18. Hydrodynamic force error estimators for a truncation length Lr ¼Hr . Sommerfeld BC; Sharan BC; analytical BC with ~mr ¼ 2;

analytical BC with ~mr ¼ 3.
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Accurate evaluation of hydrodynamic forces acting on a dam upstream face is of practical value for its design or safety
evaluation. To get more insight into the sensitivity of hydrodynamic forces to a given TBC, the following error estimators
are proposed

ZðLr Þ

jF 0 j
ðoÞ ¼ jF

ðLrÞ

0 ðoÞj�jF
ð1Þ

0 ðoÞj
jF
ð1Þ

0 ðoÞj
; ZðLr Þ

jF j
ðoÞ ¼ jF

ðLr Þ
ðoÞj�jF ð1ÞðoÞj
jF
ð1Þ
ðoÞj

(57)

Figs. 16–19 illustrate error estimators ZðLr Þ

jF 0 j
and ZðLr Þ

jF j
for hydrodynamic forces determined using Sommerfeld, Sharan and

truncated analytical TBCs [Eq. (39)] considering ~mr ¼ 2 to mr . Results are shown for four reservoir truncation lengths
Lr ¼ 0:1Hr , Lr ¼ 0:5Hr , Lr ¼Hr and Lr ¼ 2Hr . Error estimators are given in percent and are presented as bar charts equally

spaced at frequency increments of Do¼ 0:08o0 over a frequency ratio range from 0 to 6. For each truncation length, rigid
and flexible dams with Es ¼ 35 and 25 GPa are investigated, as well as five reflection coefficients a¼ 1:0, 0:8, 0:6, 0:4, and
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0:2. The bar charts in Fig. 16 clearly indicate that the error associated with the Sommerfeld boundary condition is the
highest for most of the frequency range of interest. It is seen that the Sharan boundary condition yields satisfactory results
only for very low frequencies. The error associated with the Sharan boundary condition varies significantly as a function of
frequency ratio and dam flexibility, but we note that this error globally increases with dam stiffness. Sharan and
Sommerfeld boundary conditions yield similar error estimators in the higher frequency range. We also observe that error
estimators are less sensitive to reservoir bottom wave absorbtion. More reservoir modes need to be included to match
hydrodynamic pressures in the higherfrequency range. The number of reservoir modes required for convergence in a rigid
dam case, i.e. ~mr � 3, is less than that required in the case of a flexible dam, i.e. ~mr � 10. It is important to note, however,
that an increase in the number of reservoir modes does not necessarily reduce the error estimators over the whole
frequency range, but rather enlarges the lower frequency range over which error is minimum. No definite trend could be
identified regarding the sign of the error estimators. For example, Sharan boundary condition is shown to be alternatively
Fig. 19. Hydrodynamic force error estimators for a truncation length Lr ¼ 2Hr . Sommerfeld BC; Sharan BC; analytical BC with ~mr ¼ 2;

analytical BC with ~mr ¼ 3.
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Table 1
Error estimation of hydrodynamic force coefficients for a gravity dam with modulus of elasticity Es ¼ 25 GPa.

Truncation length Boundary condition Reservoir bottom wave absorption levels

a¼ 1:0 a¼ 0:8 a¼ 0:6 a¼ 0:4 a¼ 0:2

ZðLr Þ
or

ZðLr Þ
ch

ZðLr Þ
or

ZðLr Þ
ch

ZðLr Þ
or

ZðLr Þ
ch

ZðLr Þ
or

ZðLr Þ
ch

ZðLr Þ
or

ZðLr Þ
ch

Lr ¼ 0:1Hr Sommerfeld TBC – – – – – – – – – –

Sharan TBC �3.773 �10.764 �2.857 �2.181 �3.773 �1.037 �4.587 �4.055 �4.504 �9.642

Analytical TBC, ~mr ¼ 2 �0.943 �0.263 0.000 2.185 0.000 2.402 �0.917 2.735 0.000 2.798

Analytical TBC, ~mr ¼ 3 0.000 �0.998 0.000 �0.902 0.000 0.211 �0.917 0.484 0.000 0.527

Lr ¼ 0:5Hr Sommerfeld TBC 1.886 �78.810 3.809 �64.121 4.716 �50.075 3.669 �38.720 2.702 �31.226

Sharan TBC 0.000 �0.341 0.000 0.034 0.000 �0.005 �0.917 �0.103 0.000 �0.301

Analytical TBC, ~mr ¼ 2 0.000 �0.001 0.000 0.005 0.000 0.006 0.000 0.006 0.000 0.006

Analytical TBC, ~mr ¼ 3 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.001

Lr ¼ 1:0Hr Sommerfeld TBC 0.943 �61.924 2.857 �41.524 2.830 �25.015 1.834 �13.482 1.801 �7.019

Sharan TBC 0.000 �0.003 0.000 0.000 0.000 0.000 0.000 �0.002 0.000 �0.004

Analytical TBC, ~mr ¼ 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Analytical TBC, ~mr ¼ 3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Lr ¼ 2:0Hr Sommerfeld TBC 0.000 �24.349 0.952 �8.878 0.943 �1.276 0.000 1.285 0.900 1.052

Sharan TBC 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Analytical TBC, ~mr ¼ 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Analytical TBC, ~mr ¼ 3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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conservative or non-conservative depending on the frequency ratio. As truncation length increases, Fig. 17 shows that error
estimators generally diminish over the whole frequency range. For low frequencies, Sommerfeld boundary condition still
yields unsatisfactory results, while the error due to Sharan boundary condition is nearly null. Fewer reservoir modes are

now required to obtain convergence over all the frequency range, i.e. ~mr � 3. The effect of energy dissipation at reservoir
bottom is slightly more important than for truncation length Lr ¼ 0:1Hr . It is seen that reservoir bottom wave absorption
causes error estimators to slightly diminish. As previously, Sharan and Sommerfeld yield approximately similar error
estimators in the higher frequency range. The same conclusions apply to Figs. 18 and 19. We namely observe that the error
reduction due to reservoir bottom wave absorption becomes more predominant with increasing truncation length. For a
truncation length Lr ¼ 2Hr , two reservoir modes are sufficient to obtain convergence over a wide frequency range up to
o� 5o0, and three are required for higher frequencies.

Finally, predicting the first resonant frequency of a dam–reservoir system plays an important role in the assessment of
the seismic response of dams. Error estimators for the first resonant frequency of a dam–reservoir system can be defined as

ZðLrÞ
or
¼
oðLr Þ

r �oð1Þr

oð1Þr

(58)

where oðLr Þ
r denotes the dam–reservoir resonant frequency obtained using a truncation length Lr , and oð1Þr the resonant

frequency corresponding to a semi-infinite reservoir. We may also examine error estimators for hydrodynamic force
coefficients at dam upstream face

ZðLr Þ
ch
¼

cðLr Þ

h �cð1Þh

cð1Þh

(59)

where hydrodynamic force coefficients cð1Þh and cðLr Þ

h are defined by

cð1Þh ¼
jF
ð1Þ
ðoÞjmax

Fstat
; cðLr Þ

h ¼
jF
ðLr Þ
ðoÞjmax

Fstat
(60)

For purpose of illustration, error estimators determined according to Eqs. (58)–(60) are presented in Table 1 for a gravity
dam with modulus of elasticity Es ¼ 25 GPa. As can be seen in this case, Sommerfeld boundary condition cannot be used to
determine the first resonant frequency of the dam–reservoir system, neither the corresponding hydrodynamic force
coefficient for a short truncation length Lr ¼ 0:1Hr . As truncation length increases, Sommerfeld boundary condition
becomes more accurate to predict the first resonant frequency. Predictions of corresponding resonant amplitudes are,
however, generally less accurate, but are improved for reservoirs with a highly absorptive bottom. Sharan boundary
condition yields satisfactory predictions of both first resonant frequency and corresponding amplitude, except for the short
truncation length Lr ¼ 0:1Hr . We also note that including additional reservoir modes, i.e. ~mr ¼ 2 to ~mr ¼ 3, yields an
excellent agreement with the classical solution even for short truncation lengths and irrespective of reservoir bottom wave
absorption levels.
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4. Concluding remarks

This paper presented and validated an original formulation to study dynamically excited dam–reservoir systems with
upstream TBCs. First, a review of main developments related to the application of TBCs in dam engineering was presented.
Then, the detailed mathematical derivations were provided for various TBCs and their sensitivity to: (i) truncation length,
(ii) reservoir depth, (iii) reservoir bottom wave absorption, (v) water compressibility, and (iv) dam stiffness was thoroughly
investigated over a wide frequency range of interest in dam engineering applications. The systems of equations resulting
from the analytical formulation were solved numerically to assess the accuracy and effectiveness of some classical
approximate TBCs and determine the exact error associated with their use independently of FEM or BEM modeling of the
reservoir. Exact analytical TBCs were also developed for comparison purposes. The effects of reservoir truncation length,
reservoir bottom wave absorption, water compressibility and dam stiffness on the frequency response of hydrodynamic
pressures and forces applied at a dam upstream face were identified and discussed. We showed that the widely used
assumption that TBCs are height-independent holds only over a low frequency range up to a characteristic frequency
which increases with truncation length. This height-dependence was observed to generally increase with higher reservoir
bottom wave reflection and dam flexibility. We also concluded that the effect of water compressibility is significant except
for highly absorptive reservoirs at a very low frequency range. Using the new formulation, error estimators were
determined to provide guidelines for selecting TBCs to be implemented in finite element or boundary element models of
dam–reservoir systems. For that purpose, the sensitivity of hydrodynamic forces acting on dam upstream face and that of
the first resonant frequency of the dam–reservoir system to the various aforementioned parameters were systematically
investigated. The following main trends could be identified especially when short reservoir truncation lengths are required
to reduce computational burden: (i) incompressibility-based TBCs generally induce significant errors and should not be
used, (ii) Sommerfeld TBC fails in predicting the first resonant frequency of the dam–reservoir system as well as
hydrodynamic forces on most of the frequency range of interest, (iii) improved results can be obtained by using the Sharan
TBC or the truncated analytical TBCs introduced in the paper, and applying the error estimators proposed to control the
quality of the solution as a function of frequency ratio, dam flexibility and wave absorption at reservoir bottom. The in-
depth parametric studies presented illustrate how the proposed formulation and error estimators can be used efficiently
for a rigorous assessment of the accuracy and effectiveness of classical or newly developed TBCs, namely by defining
reservoir length to depth ratios and frequency ranges for which the application of these TBCs would be recommended. We
note that the proposed method, which can be easily programmed, is valuable in testing, validating or developing TBCs that
are either height-dependent or independent, and frequency-dependent or independent, with the latter case being
generally more suited for time domain analyses. Finally, although the paper provided the formulation and fundamental
mechanisms involved in vibrating dam–reservoir systems with upstream TBCs, the methodology and findings described
can be extended to other similar fluid–structure problems.
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Appendix A

The hydrodynamic pressure frequency response functions pðLr Þ

0 and pðLr Þ

j are determined in this appendix for the TBCs
given by Eqs. (32) and (33). For clarity and brevity, the following notation is used in this appendix: and
pðLr Þ

‘ ðx; y;oÞ ¼
pðLr Þ

0 ðx; y;oÞ if ‘¼ 0 ðA:1Þ

pðLr Þ

j ðx; y;oÞ if ‘¼ j ðA:2Þ

8<
:

f0ðyÞ ¼ ag ; Z0 ¼ ag (A.3)

f1ðyÞ ¼cðxÞj ðyÞ; Z1 ¼ 1 (A.4)

Throughout the appendix, subscript ‘ can take the values 0 or j.
Using the technique of separation of variables, hydrodynamic pressures can be expressed as

pðLr Þ

‘ ðx; y;oÞ ¼ pðLr Þ

‘x ðx;oÞp
ðLrÞ

‘y ðy;oÞ (A.5)

Substitution into Eq. (3) yields the two differential equations

d2pðLr Þ

‘x

dx2
�k2pðLr Þ

‘x ¼ 0 (A.6)
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d2pðLr Þ

‘y

dy2
þl2pðLr Þ

‘y ¼ 0 (A.7)

where l and k are complex constants related by

k2 ¼ l2
�
o2

C2
(A.8)

The general solutions of Eqs. (A.7) and (A.6) can be written, respectively, as

pðLr Þ

‘x ðx;oÞ ¼ g
ð‘Þ
1 ðoÞe

�kxþgð‘Þ2 ðoÞe
kx (A.9)

pðLr Þ

‘y ðy;oÞ ¼ g
ð‘Þ
3 ðoÞe

�ilyþgð‘Þ4 ðoÞe
ily (A.10)

where the coefficients gð‘Þ1 ðoÞ, g
ð‘Þ
2 ðoÞ, g

ð‘Þ
3 ðoÞ and gð‘Þ4 ðoÞ are to be determined by imposing the boundary conditions.

Using the transformations of Eq. (A.5) into Eqs. (9) and (10), we obtain the boundary conditions to be satisfied by pðLr Þ

‘y

dpðLr Þ

‘y

dy
ð0;oÞ ¼ ioqpðLrÞ

‘y ð0;oÞ (A.11)

pðLr Þ

‘y ðHr ;oÞ ¼ 0 (A.12)

Substituting pðLrÞ

‘y ðy;oÞ by its expression in Eq. (A.10) into Eqs. (A.11) and (A.12) yields Eq. (18) to be satisfied by the
eigenvalues lnðoÞ. The associated eigenvectors Yn;n¼ 1 . . .mr are given by Eq. (19) and they satisfy the orthogonality
relations
Z Hr

0
Ysðy;oÞYnðy;oÞdy¼

0 if san ðA:13Þ

bnðoÞ
2l2

nðoÞ
if s¼ n ðA:14Þ

8><
>:
Using Eq. (A.9), the hydrodynamic pressure can be expressed as the summation

pðLr Þ

‘ ðx; y;oÞ ¼
X1
n ¼ 1

½gð‘Þ1;nðoÞe
�knðoÞxþgð‘Þ2;nðoÞe

knðoÞx�Ynðy;oÞ �
Xmr

n ¼ 1

½gð‘Þ1;nðoÞe
�knðoÞxþgð‘Þ2;nðoÞe

knðoÞx�Ynðy;oÞ (A.15)

where the complex coefficients knðoÞ are given by Eq. (20) and mr is the number of reservoir modes.
Coefficients gð‘Þ1;nðoÞ and gð‘Þ2;nðoÞ are to be determined by imposing the boundary conditions at dam upstream face

[Eqs. (8)] and at the reservoir truncation boundary [Eqs. (32) and 33]

qpLr
‘

qx
ð0; y;oÞ ¼�rrf‘ðyÞ (A.16)

qpðLr Þ

‘

qx
ð�Lr ; y;oÞ ¼ yðLr Þ

‘ ðy;oÞp
ðLr Þ

‘ ð�Lr ; y;oÞ (A.17)

which yields after substitution of Eq. (A.15)

Xmr

n ¼ 1

knðoÞ½gð‘Þ1;nðoÞ�g
ð‘Þ
2;nðoÞ�Ynðy;oÞ ¼ rrf‘ðyÞ (A.18)

Xmr

n ¼ 1

fgð‘Þ1;nðoÞ½knðoÞþyðLr Þ

‘ ðy;oÞ�e
knðoÞLr�gð‘Þ2;nðoÞ½knðoÞ�yðLr Þ

‘ ðy;oÞ�e
�knðoÞLr gYnðy;oÞ ¼ 0 (A.19)

Multiplying Eq. (A.18) by eigenvectors Ysðy;oÞ; s¼ 1 . . .mr , integrating over reservoir height Hr and using the orthogonality
relationships in Eqs. (A.13) and (A.14) gives

gð‘Þ2;nðoÞ ¼ g
ð‘Þ
1;nðoÞ�2rrZ‘Hr

l2
nðoÞ

bnðoÞ
I‘nðoÞ
knðoÞ

(A.20)

Replacing into Eq. (A.19) yields

Xmr

n ¼ 1

fkn½e
�knðoÞLr�eknðoÞLr ��½e�knðoÞLrþeknðoÞLr �yðLr Þ

‘ ðy;oÞgYnðy;oÞgð‘Þ1;nðoÞ

¼ 2rrZ‘Hr

Xmr

n ¼ 1

l2
nðoÞ

bnðoÞ
I‘nðoÞ
knðoÞ

e�knðoÞLr ½knðoÞ�yðLr Þ

‘ ðy;oÞ�Ynðy;oÞ (A.21)
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Both sides of this equation can then be multiplied by eigenvectors Ysðy;oÞ; s¼ 1 . . .mr , and integrated over reservoir height
Hr to obtain the system of linear equations

Að‘ÞCð‘Þ ¼ Bð‘Þ (A.22)

in which the elements of matrix Að‘Þ and vectors Cð‘Þ and Bð‘Þ are defined for n¼ 1 . . .mr and s¼ 1 . . .mr as

Gð‘Þn ¼ g
ð‘Þ
1;nðoÞ; (A.23)

Að‘Þsn ðoÞ ¼
knðoÞbnðoÞ

2l2
nðoÞ

½e�knðoÞLr�eknðoÞLr �dsn�½e
�knðoÞLr þeknðoÞLr �

Z Hr

0
yðLr Þ

‘ ðy;oÞYsðy;oÞYnðy;oÞdy (A.24)

Bð‘Þs ðoÞ ¼ 2rrZ‘Hr

Xmr

n ¼ 1

l2
nðoÞ

bnðoÞ
I‘nðoÞ
knðoÞ

g
knðoÞbnðoÞ

2l2
nðoÞ

dsn�

Z Hr

0
yðLr Þ

‘ ðy;oÞYsðy;oÞYnðy;oÞdy

" #
e�knðoÞLr (A.25)

where d is the Kronecker symbol. Eq. (A.15) transforms then to

pðLr Þ

‘ ðx; y;oÞ ¼
Xmr

n ¼ 1

½e�knðoÞxþeknðoÞx�Gð‘Þn ðoÞ�2rrZ‘Hr
l2

nðoÞ
bnðoÞ

I‘nðoÞ
knðoÞ

eknðoÞx

( )
Ynðy;oÞ ¼ pð1Þ‘ ðx; y;oÞ

þ
Xmr

n ¼ 1

½e�knðoÞxþeknðoÞx�Gð‘Þn ðoÞYnðy;oÞ (A.26)

If the functions yðLr Þ

‘ were assumed constant over reservoir height, i.e. independent of the y coordinate, the integrals in
Eqs. (A.24) and (A.25) become by virtue of orthogonality relations of eigenvectors Yn:Z Hr

0
yðLr Þ

‘ ðoÞYsðy;oÞYnðy;oÞdy¼
bnðoÞ

2l2
nðoÞ

yðLr Þ

‘ ðoÞdsn (A.27)

Replacing into Eq. (A.24) shows that matrix Að‘Þ is diagonal in this case, with elements given by

Að‘Þsn ðoÞ ¼
bnðoÞ

2l2
nðoÞ
f½e�knðoÞLr�eknðoÞLr �knðoÞ�½e�knðoÞLrþeknðoÞLr �yðLrÞ

‘ ðoÞgdsn (A.28)

Replacing Eq. (A.27) into Eq. (A.25), the elements of vector Bð‘Þ also simplify to

Bð‘Þs ðoÞ ¼ rrZ‘Hr
I‘sðoÞ
ksðoÞ

½ksðoÞ�yðLr Þ

‘ ðoÞ�e
�ksðoÞLr (A.29)

The solution of the system of equations (A.22) is then obtained as

gð‘Þ1;nðoÞ ¼
Bð‘Þn ðoÞ
Að‘ÞnnðoÞ

¼
2rrZ‘Hr

bnðoÞknðoÞ
l2

nðoÞI‘nðoÞ½knðoÞ�yðLrÞ

‘ ðoÞ�e�knðoÞLr

f½e�knðoÞLr�eknðoÞLr �knðoÞ�½e�knðoÞLrþeknðoÞLr �yðLr Þ

‘ ðoÞg
(A.30)

Substituting into Eq. (A.20) and then Eq. (A.15), yields the hydrodynamic pressure

pðLr Þ

‘ ðx; y;oÞ ¼�2rrZ‘Hr

Xmr

n ¼ 1

l2
nðoÞ

bnðoÞ
I‘nðoÞ
knðoÞ

XðLr Þ

‘n ðx;oÞYnðy;oÞ (A.31)

where

XðLr Þ

‘n ðx;oÞ ¼
eknðoÞðxþLr Þ þzðLr Þ

‘n ðoÞe�knðoÞðxþ Lr Þ

eknðoÞLr�zðLr Þ

‘n ðoÞe�knðoÞLr

(A.32)

and

zðLr Þ

‘n ðoÞ ¼
knðoÞ�yðLr Þ

‘ ðoÞ
knðoÞþyðLr Þ

‘ ðoÞ
(A.33)
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